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ABSTRACT 

The article deals with the analytic solution of the electric car acceleration. The solution 

was created in the general form as the analytic equations in the closed shape, and not with 

the help of numerical methods.  

1. INTRODUCTION 

The whole energy spending during the acceleration is very critical at the electric car drive 

supplied with the hydrogen fuel cell in the combination with the ultracapacitor. The reason 

of it is the relative small energy amount stored in the ultracapacitor. However, the ultraca-

pacitor usage brings the great advantage which lies in the fact, that the hydrogen fuel cell 

can be designed to the average travelling power, and not to the peak power (Pav : Ppeak = 1 : 

3 obviously). The peak power at the accelerations and decelerations is covered from the ul-

tracapacitor. 

So, from the energy consumption point of view, it is useful to analyse the car acceleration 

very precisely in the general analytic form. These results can serve as input data for the ba-

sic drive design at different input conditions. 

2. FRICTION FORCES  

At the general solution of the acceleration it is necessary to consider all force types: gravi-

tation force, dry and rolling frictions, viscous friction, aerodynamic friction. 

At the dry and rolling friction the whole force FF is constant, independent on the velocity 

 mgF F . (1) 

The coefficient of the rolling friction  = 0.02 approximately. 

Viscosity friction force FV (e.g. in the gear box) depends on the first power of the velocity: 

 )(VV tvkF  , (2) 

where kV is the viscosity coefficient. 

For the aerodynamic pressure the equation p = 1/2 (v
2
) is valid, where  = 1.29kg/m

3
 is 

the air mass density. Aerodynamic friction force depends on the second power of the ve-

locity: 
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where S is the area of the perpendicular frontal car projection, Cx is non-dimensional coef-

ficient closed to number 0.4 which is dependent on the car shape. 

3. VELOCITY CALCULATION   

Initial preposition: 

 The machine traction force F is kept constant in the velocity range v = 0 up to vmax duri the 

acceleration. 

 Maximum traction force Fmax is restricted by the physical way on the constant value (e.g. 

by the current limiting in the converter: Fmax  Tmax  Imax). The value Fmax is independent 

on the velocity in the all velocity range v = 0 up to vmax. 

 Maximum velocity vmax is restricted by the physical way on the constant value (e.g. by the 

maximal converter output voltage). 

 In the equilibrium state for the limit velocity vlim the inequality vlim  vmax is valid even 

though at F = Fmax. 

Under these preposition the following motion equation is valid: 
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The  angle corresponds to the set inclination. It is deals with the differential equation of 

the first degree which will be arranged into following form: 
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The following constants a, b, c,  will be introduced for the simpler notation: 
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The constant a must not equal to zero, in this case the solution would be wholly different, 

and simpler. After the constant putting, the equation must be transform into the separate 

form 
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From formal reasons only the remarking v(t)  x will be used. The separate equation can 

be directly integrated. The solution method is strongly depended on the sign of the deter-

minant (b
2
  4ac). At the acceleration certainly is valid 

 0sin  mgmgF  . (11) 

This is the reason why the coefficient c is negative. For that reason the term (b
2
  4ac) is 

positive, hence the asked integral will have the following form, 1: 
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The bottom integration boundary has the significance as the initial velocity v0 from which 

the acceleration starts. The top integration boundary has the significance of the asked in-

stantaneous velocity. After putting both of boundary, the bottom and top, we gain the term 

whose significance is the whole acceleration time from velocity v0 to the actual velocity 

v(t): 
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The asked instantaneous velocity during the acceleration goes out directly from equation 

(13): 
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The limit velocity vlim in the steady state can be determined as the limit for t  : 
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The instantaneous acceleration will be gain as the differentiation of the equation (14): 
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Let us note that the analytic solution given by equations (13) up to (16) is wholly general. 
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Figure 1: Acceleration. 

4. ENERGY RELATIONS AT THE ACCELERATION  

On the presumption that the slip does not appear in the gearbox nor at the wheel-road 

touch, the instantaneous mechanical power on the motor shaft is given by the equation 
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Power
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Figure 2: Power. 

Let us emphasise that F(t) is the equivalent force corresponding to the torque on the motor 

shaft. 

The constant power in the steady state can be determined as the limit for t  : 
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The energy which is spent during the acceleration in the time interval 0 up to t: 
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After solving: 
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Energy consumption
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Figure 3: Energy consumption. 

The second term on the right side of the equation (20) is negative, and it says how much is 

the whole energy smaller in the acceleration case when comparing to the energy spent in 

the same time interval but in the limit steady state at the constant power Plim = Fvlim (vide-

licet, during the acceleration is valid inequalities v(t)  vlim hence p(t)  Plim). 

5. CONCLUSION 

In the paper was shown the analytic solution of the electric car acceleration. The intro-

duced example shows that the usage of these analytic results is very simple.  
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